Flying a helicopter
Helicopter stories
Accidents
Acronyms
Jobs new
Airliners
Airshows
Future helicopters
For Sale
Contact


Database

47189 serials
20053 photos
4006 heliports



facebook     twitter     google     linkedin


Sponsors

Viewpoint

Saxon


Promote Your Services Here




facebook     twitter     google     linkedin

Sponsored by
Viewpoint Saxon

Promote Here



Latest News

JBI Helicopters in the Farming of Cranberry Bogs

Aeromedical Tilt Rotor Seminar in Australia

Falcon Aviation Orders Three More H160

ASU Delivered NVG Capable AS350 to HNZ Topflight

EDIC’ Horizon International Flight Academy

400,000 Flight Hours for V-22 Osprey Fleet

Sikorsky S-92 Certified by Mexico DGAC

AAR to Enhance Support for the UAE Armed Forces


Newsletter #275     | News

Graphene composite may keep wings ice-free


A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade by heating surfaces and simplify ice removal.


  • A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade by heating surfaces and simplify ice removal.
  • Graphene composite may keep wings ice-free


Rice University, January 25, 2016 - HOUSTON by Mike Williams – A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade.

The coating by the Rice lab of chemist James Tour may be an effective real-time de-icer for aircraft, wind turbines, transmission lines and other surfaces exposed to winter weather, according to a new paper in the American Chemical Society journal ACS Applied Materials and Interfaces.

In tests, the lab melted centimeter-thick ice from a static helicopter rotor blade in a minus-4-degree Fahrenheit environment. When a small voltage was applied, the coating delivered electrothermal heat – called Joule heating – to the surface, which melted the ice.

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Previous experiments showed how the nanoribbons in films could be used to de-ice radar domes and even glass, since the films can be transparent to the eye.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

In Rice’s lab tests, nanoribbons were no more than 5 percent of the composite. The researchers led by Rice graduate student Abdul-Rahman Raji spread a thin coat of the composite on a segment of rotor blade supplied by a helicopter manufacturer; they then replaced the thermally conductive nickel abrasion sleeve used as a leading edge on rotor blades. They were able to heat the composite to more than 200 degrees Fahrenheit.

For wings or blades in motion, the thin layer of water that forms first between the heated composite and the surface should be enough to loosen ice and allow it to fall off without having to melt completely, Tour said.

The lab reported that the composite remained robust in temperatures up to nearly 600 degrees Fahrenheit.

As a bonus, Tour said, the coating may also help protect aircraft from lightning strikes and provide an extra layer of electromagnetic shielding.

Co-authors of the paper are Rice undergraduates Tanvi Varadhachary, graduate student Tuo Wang, postdoctoral researchers Jian Lin and Yongsung Ji, alumni Kewang Nan, Yu Zhu of the University of Akron and Bostjan Genorio of the University of Ljubljana, Slovenia, and research scientist Carter Kittrell.

Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering.

The Air Force Office of Scientific Research and Carson Helicopter supported the research.


This article is listed in :
--Helicopters Blades

Sponsors

Viewpoint

Saxon


Promote Your Services Here




facebook     twitter     google     linkedin

Sponsored by
Viewpoint Saxon

Promote Here